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Abstract

Positron emission tomography (PET) permits imaging of the regional biodistribution and pharmacokinetics of compounds 
labeled with short-lived positron-emitting isotopes. It has enabled evaluation of neurochemical systems in the living human 
brain, including effects of toxic substances. MicroPET devices allow studies of the rat brain with a spatial resolution of ~2 mm. 
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This is much poorer resolution than obtained using ex vivo autoradiography. However, animals need not be euthanized before 
imaging, so repeat studies are possible. This in principle allows the effects of toxic insults to be followed over the lifetime of an 
individual animal. We used microPET to evaluate brain metabolic effects of irradiation with high-energy heavy ions (HZE 
radiation), a component of the space radiation environment, on regional glucose metabolism. A significant fraction of neurons 
would be traversed by these densely ionizing particles during a Mars mission, and there is a need to estimate human 

neurological risks of prolonged voyages beyond the geomagnetosphere. Rats were irradiated with 56Fe (600 MeV/n) ions at 
doses up to 240 cGy. At 9 months post-irradiation we did not detect alterations in regional accumulation of the glucose analog 

[18F]2-deoxy-2-fluoro-D-glucose. This may indicate that damage to the brain from HZE particles is less severe than feared. 
However, because radiation-induced alterations in some behaviors have been documented, it may reflect insensitivity of 
baseline cerebral glucose metabolism to HZE radiation. These studies will facilitate design of future studies of chronic, long-
term exposure to both therapeutic and abused drugs using microPET.

Keywords: MicroPET, FDG, neurotoxicity, radiation, brain

Introduction

Exposure to drugs and other chemicals is often associated with adverse effects including undesired neurological sequelae and 

in some cases long-term neurotoxicity. Organophosphate ester poisoning is a well-known example.1 Well-documented 

examples for therapeutic drugs include tardive dyskinesia after prolonged administration of neuroleptic drugs.2 There are also 

established examples of brain damage associated with abused drugs, including encephalopathy in alcoholism,3 focal infarcts in 

some cocaine abusers,4 and in solvent abuse.5 Problems in relating damage to drug abuse in human subjects can be difficult 
because of uncertainties in determining the intensity, duration, and pattern of drug consumption. Furthermore, some conditions 
associated with drug abusers may be predisposing conditions rather than drug effects. This is especially so for relatively subtle 
psychiatric conditions rather than frank neurological problems.

PET and MicroPET

Positron emission tomography (PET) is a radionuclide imaging modality that was the first technology that enabled direct 

measurement of components of the neurochemical systems in the living human brain.6 The most commonly used radionuclides 
are 11C and 18F. Because of the short half-life of 11C (20 minutes) this has to be produced using a cyclotron and radiochemical 
laboratory in very close proximity to the PET laboratory. In contrast, 18F has a long enough half-life (110 minutes) for transport 
of radiotracers over limited distances, and this has proved to be economically viable for radiopharmaceuticals such as [18F]2-
deoxy-2-fluoro-D-glucose (FDG) that have a high demand because of extensive clinical use. FDG measures local rates of 

glucose use since it is metabolically trapped as FDG-6-phosphate, and is therefore a marker of overall metabolic activity.7 
However, developments in medicinal radiochemistry over the past 25 years have brought us to the point where many positron-
labeled radiotracers are available that allow various aspects of tissue neurochemistry and biochemistry to be evaluated in 

humans, primates, and even rats. To take the brain dopamine system as an example, tracers include 18F-labeled L-
dihydroxphenylalanine (DOPA) for measuring the activity of aromatic aminoacid decarboxylase; dihydrotetrabenazine for the 
vesicular amine transporter, VMAT2; cocaine for the neuronal dopamine transporter; clorgyline for monoamine oxidase A; L-

deprenyl for monoamine oxidase B; raclopride for dopamine D2 receptors and SCH23390 for dopamine D1 receptors.8 
Although PET studies of the dopamine system are the most advanced, radiotracers for probing other neurotransmitter systems 
are also available. For example, in the cholinergic system, nicotinic and muscarinic receptor radioligands are readily 

accessible, as well as tracers for the vesicular acetylcholine transporter and for acetylcholinesterase.9

PET is used extensively in clinical neurological research to study conditions such as parkinsonism.10 It is also used in 

psychiatric research, especially schizophrenia and drug abuse.11-13 In medical diagnosis, cancer applications dominate.14 PET 
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depends largely on the availability of radiotracers labeled with short-lived isotopes of which FDG is the most commonly 
employed. The recent development of microPET devices able to measure glucose metabolism and radioligand binding in rat 
brain has provided a research tool that could give quantitative measures of neurotoxicological effects of drugs and other 

factors.15-17 In principle, the great advantage of microPET over traditional methods of imaging the rodent brain is that 
measurements do not necessitate euthanasia of animals. Thus, individual animals can be imaged for assessment of receptor 
levels or of metabolic activity either acutely or repeatedly. As a result, longitudinal studies are possible and subjects may be 
used “as their own control” or imaged sequentially with multiple tracers. MicroPET technology therefore appears to be a 
promising modality for investigations of long-term neurotoxicity.

To date, however, brain microPET studies in the realm of pharmacology have been limited to evaluation of acute or subchronic 

neurotoxicity. For example, Brownell et al18 have evaluated effects on FDG uptake of 3-nitropropionic acid at 1, 28, and 120 
days after initial exposure. They found variability in responses of individual animals to this neurotoxin, and reported that 
decreased FDG accumulation in striatum 1 day after exposure predicted behavioral and neurochemical effects at later times.

The Space Radiation Environment

During the past several years we have been involved in NASA-funded neurobehavioral and neuroimaging studies designed to 
detect possible effects on the brain of irradiation with high energy heavy ions (HZE radiation). The relevance of this work is that 
space travel beyond the Earth’s protective magnetic field (for example, to Mars) will involve exposure of astronauts to 

irradiation by high-energy nuclei such as 56Fe, which are a component of galactic cosmic rays. Although the radiation absorbed 
dose to the brain from this source is not high, these particles have high linear energy transfer (LET) and may irreversibly 

damage cells they traverse.19 Exposure to HZE radiation may therefore cause progressive deterioration of brain function, 

adding to damage involved in normal aging.20 It has been estimated that at least 7% of neurons in the central nervous system 
would suffer traversal by heavy ions during a Mars mission using current propulsion technology that would require more than 2 

years in interplanetary space.21 Astronauts cannot be effectively shielded from these densely ionizing particles, so that the risk 
of adverse effects on the brain are very real. Previous studies support the notion of damage, but are not definitive, especially 
with regard to long-term effects. For example, an often cited loss of 60% to 80% of the key enzyme in dopamine synthesis, 

tyrosine hydroxylase, in rat substantia nigra has never been substantiated in a peer-reviewed journal.22 However, cell loss after 
HZE irradiation has been documented in well-conducted studies of the retina, which is considered to be part of the central 

nervous system.23,24 Recent direct evidence for adverse health effects of heavy ion particles has come from studies of 

cataracts in members of the US astronaut corps. Cucinotta and colleagues25 have documented a statistically significant 
relationship between cataract formation and service on space missions involving higher exposure to HZE radiation. Risk 
estimates for the impact on various aspects of human health of galactic cosmic rays are associated with large 

uncertainties.26,27

Methods

Animals

Male Sprague-Dawley (200-225 g) rats were purchased from Taconic Farms (Germantown, NY) and used in this study. 
Animals were randomly selected to the 0, 120, or 240 cGy irradiation groups on arrival and housed in standard laboratory 
conditions with a 12-hour dark/light cycle, lights off at 10 am, in a temperature- and humidity-controlled room. The animals 
were kept in single cages with restriction to food but not water. All procedures related to the use of the animals in this study 
were conducted based on fundamentals in the Institute of Health Guide for the Use of Animals Laboratory and with all respect 
to the ethical issues regarding experimenting on animals. The study protocol was approved by the Brookhaven National 
Laboratory (BNL) Institutional Animal Care and Use Committee.
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NASA Space Radiation Laboratory

Animals were irradiated at 0, 120, or 240 cGy of 600 MeV/n 56Fe at the NASA Space Radiation Laboratory (NSRL) during 
September 2004. The beam of heavy ions was collimated to focus primarily on the head region. The dose rate was such that 
animals were in the beam for approximately 2 minutes. Before irradiation, anesthesia was induced using a 4% isoflurane/
oxygen mixture and maintained on a 2% mixture. Unconsciousness was then maintained on 2% isoflurane in oxygen.

MicroPET

At 6 and 9 months after irradiation, each rat was imaged using a microPET R4 scanner manufactured by Concorde 
MicroSystems (Knoxville, TN). Animals were given IV injections of FDG (~0.7 mCi) via the lateral tail vein and placed in a novel 
environment (a plexiglass box) for 40 minutes. During this uptake period FDG enters the brain and is converted to FDG-6-
phosphate, which is metabolically trapped and reflects regional rates of glucose consumption. Animals were then anesthetized 
with ketamine/xylazine (100 mg/kg/10 mg/kg) and positioned in the microPET for 20 minutes. Following the scan, blood plasma 
was prepared and a 10-ìL aliquot was assayed for radioactivity in a well counter. Images were coregistered and uptake in 
regions of interest were evaluated using PMOD version 2.6 software (PMOD Technologies Ltd, Zurich, Switzerland) according 
to a manually constructed template.

Autoradiographic Imaging

In addition to microPET, brain uptake of FDG in some animals was evaluated autoradiographically. After decapitation of 
anesthetized rats, brains were removed and 300-ìm sections were prepared using a vibratome. These were transferred to 
microscope slides and placed on a slide warmed for 60 minutes. The dried slides were apposed to phosphor imaging plates for 
2 hours. The plates were scanned and images displayed using a Perkin-Elmer Cyclone phosphorimager (Wellesley, MA).

Results

Representative microPET images are shown in Figure 1. Mean standardized uptake values (SUVs) at 6 months and 9 months 
for striatum, thalamus, and hippocampus for the 3 irradiation groups, together with averaged tissue-to-global uptake ratios, are 
displayed graphically in Figure 2. SUVs for a larger list of brain regions at the 9-month time point are given in Table 1. There 
were no significant differences across radiation dose (0, 120, or 240 cGy) or time of scanning (6 or 9 months). Furthermore, 
there were no significant (P < .05) group differences for global FDG uptake. There was a very weak trend toward higher global 
FDG uptake in the 240-cGy group at 9 months compared with 6 months (21% increase; P < .2).

Table 1. Standardized Uptake Values at 9 Months Post-irradiation*

Brain Region 0 cGy (n = 5) 120 cGy (n = 8) 240 cGy (n = 8)

Right olfactory bulb 3900 ± 474 3510 ± 422 3840 ± 333

Left olfactory bulb 3886 ± 461 3486 ± 416 3853 ± 321

Right frontal region 2978 ± 321 2765 ± 342 2977 ± 275

Left frontal region 2914 ± 319 2670 ± 311 2918 ± 263

Right cingulate gyrus 4106 ± 361 3682 ± 424 4170 ± 376

Left cingulate gyrus 4070 ± 379 3667 ± 413 4160 ± 373

Right orbital cortex 4252 ± 440 3898 ± 453 4243 ± 420
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Left orbital cortex 4068 ± 453 3849 ± 441 4154 ± 391

Right parietal cortex 2587 ± 279 2636 ± 348 2607 ± 243

Left parietal cortex 2562 ± 385 2413 ± 259 2582 ± 218

Right insular rhinal cortex 2823 ± 281 2783 ± 308 2871 ± 284

Left insular rhinal cortex 2692 ± 346 2667 ± 262 2878 ± 278

Right nucleus accumbens 3471 ± 350 3157 ± 376 3587 ± 330

Left nucleus accumbens 3457 ± 371 3148 ± 362 3504 ± 288

Left striatum 3854 ± 402 3468 ± 371 3932 ± 354

Right striatum 3493 ± 319 3174 ± 370 3593 ± 320

Right granular cortex 3256 ± 265 2990 ± 369 3356 ± 297

Left granular cortex 3257 ± 247 2989 ± 368 3373 ± 307

Right occipital cortex 2663 ± 247 2628 ± 341 2752 ± 259

Left occipital cortex 2658 ± 262 2483 ± 274 2742 ± 244

Right temporal motor cortex 2827 ± 170 2664 ± 231 2805 ± 182

Left temporal motor cortex 2703 ± 292 2537 ± 170 2759 ± 182

Right hippocampus 3684 ± 306 3337 ± 362 3826 ± 355

Left hippocampus 3688 ± 326 3344 ± 357 3782 ± 344

Right thalamus 3565 ± 303 3155 ± 335 3659 ± 348

Left thalamus 3527 ± 326 3143 ± 330 3612 ± 335

Right hypothalamus 2020 ± 187 1700 ± 174 2035 ± 167

Left hypothalamus 1977 ± 196 1710 ± 177 2010 ± 160

Right cerebellum 3057 ± 253 2788 ± 341 2878 ± 284

Left cerebellum 3005 ± 316 2730 ± 313 2953 ± 277

*Values for brain concentration of 18F are the mean ± SEM and have units of Bq per m3per Bq injected per kg body weight 
(equivalent to nCi per cc per mCi injected per kg body weight).
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Figure 1. Representative coronal microPET images at the level of the striatum (ST) and of the thalamus (TH), and 

hippocampus (HP) after administration of [18F]2-deoxy-2-fluoro-D-glucose. Animals were anesthetized with ketamine/xylazine 
and scanned 6 months and 9 months after irradiation with a 600-MeV 56Fe particle beam at doses of 0 cGy, 120 cGy, and 
240 cGy.

Figure 2. Regional brain standardized uptake values (SUVs) and tissue-to-global radioactivity ratios for [18F]2-deoxy-2-fluoro-
D-glucose in striatum (ST), thalamus (TH), and hippocampus (HP) at 6 months and 9 months post-irradiation. Each panel 
shows SUV or uptake ratio for (left-to-right) 0, 120, and 240 cGy groups.

Autoradiographic images of sections of brains from representative animals did not show obvious group differences in patterns 
of FDG uptake. Sections are shown for each of the dose groups in Figure 3. Although of higher spatial resolution than 

microPET, these images have much poorer resolution than classical [14C]2-deoxyglucose studies.
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Figure 3. Representative 18F imaging plate autoradiographs of vibratome-cut sections of rat brain at the level of striatum (ST) 
and cerebellum (CB).

Discussion

Behavioral studies by ourselves and others have not revealed large or obvious long-term effects on open-field behavior of 
moderate doses of HZE radiation. However, we have detected reductions in cocaine-stimulated ambulation and in performance 

in light-dark and auditory discrimination conditioning.28-31 Other workers have also documented behavioral effects of HZE 

radiation.32-36 Although one might expect behavioral effects to have neurochemical correlates, such as altered local rates of 
glucose metabolism, our microPET studies did not reveal any regional changes in FDG accumulation as a result of irradiation 

with 56Fe particles. Possible reasons why no changes in microPET/FDG images were seen include the following:

1.  The spatial resolution of microPET is approximately 2 mm, so that differences in small brain structures between control 
and irradiated rats might not be detected. One such structure is the nucleus accumbens, which is implicated in cocaine-
stimulated locomotion. 

2.  The imaging studies were conducted under open-field conditions, where no overt behavioral effects of radiation were 
seen. It is possible that FDG patterns might differ between controls and irradiated rats if the animals were injected with 
cocaine, or conducted operant tasks during the 45-minute uptake period—conditions where behavioral differences were 
seen. 

3.  The studies may have been technically suboptimal. Indeed, rigorous FDG studies in human research subjects involve 
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placement of arterial catheters, so that the local brain accumulation of FDG/FDG-6-phosphate can be quantified in 

terms of the input of FDG to the brain in arterial blood plasma. The autoradiographic [14C]2-deoxyglucose method 

developed by Sokoloff37 uses arterially cannulated rats. In our hands, however, there was unacceptable mortality 
associated with cannulation, probably in part because of the age of our animals. This was especially problematical 
when it was desired to cannulate animals 2 or more times to conduct longitudinal studies. 

4.  Other potentially confounding issues were present, including anesthesia, which was necessary both for head-only 
irradiation and for microPET imaging (and also for cannulation in some cases). Some studies have documented long-

term effects of anesthesia on cognitive abilities of both animals and humans.38-40 It is possible therefore that deficits 
from anesthesia could mask deficits as a result of radiation. Another possibility is that lack of a behavioral enrichment 
program for our animals could have resulted in research subjects in both control and irradiated groups whose motor and 
cognitive abilities are well below their potential. In other words, behavioral and imaging deficits might be better exposed 
if all animals were maintained in a more challenging environment. This possibility is supported by the recent microPET/

FDG studies of Barbarich-Marsteller et al.41 These workers showed that rats subject to moderate food deprivation and 
access to an exercise wheel exhibited altered patterns of FDG accumulation relative to control animals housed under 
standard conditions. 

To date there are only a few published microPET studies that assessed neuroreceptor levels after chronic, long-term 

administration of drugs or other substances.42-44 Thanos et al42 reported in a microPET/[11C]raclopride study that after 7 
weeks of ethanol self-administration, ethanol-preferring rats maintained lower D2 receptor levels as compared with rats that 

drank very little ethanol over the same period of time. Rodriguez et al43 using a rat model of Parkinson's disease assessed 
dopamine transporter and D2 receptor levels before and after embryonic stem cell transplantation into the substantia nigra. 
They found that grafted animals exhibited decreased striatal D2 receptor levels, consistent with increased release of dopamine 

from nerve terminals in caudate-putamen. In another study, using a rat model of obesity and both microPET/[11C]raclopride 

and autoradiography, Michaelides et al44 found that D2 levels in striatum were inversely related to body weight and also 
dependent on genetic profile and feeding regimen. More recently, effects of 6-hydroxydopamine lesioning have been evaluated 

in the rat brain using microPET. Inaji et al45 used [11C]raclopride and the dopamine transporter radioligand [11C]PE2I to study 

attempted tissue repair using transplanted fetal mesencephalic tissue. Ishida et al46 studied the kinetics of altered dopamine 

synthesis and D1 and D2 dopamine receptors in lesioned animals. Also, Schiffer et al47 recently used both FDG and [11C]
raclopride to investigate the consequences of striatal placement of a microdialysis cannula as an example of a chronic brain 
implant. FDG accumulation was significantly reduced throughout the hemisphere in which the cannula was placed, for at least 
3 weeks, although neither striatal D2 receptor binding nor extracellular dopamine was affected. These studies demonstrate the 
potential of microPET used in conjunction with neuroreceptor radioligands in neurotoxicological studies.

Conclusions

MicroPET has great advantages over traditional small-animal imaging methods that can compensate for its high cost and 
limited resolution. These stem from the fact that the animal need not be euthanized before imaging. Therefore, repeated 
studies are possible in an individual animal, using either the same or different radiotracers. This in principle allows the effects 
of toxic insults to be followed over the lifetime of an individual animal, greatly reducing the number of animals needed to 
establish effects. Furthermore, microPET imaging can be used in ongoing experiments to determine whether and when other 
assays are appropriate. Despite the great potential for longitudinal and long-term PET studies of toxicity in animal models, 
there are important practical issues that have to be considered. Among these are the effects of repeated induction of 
anesthesia, the need for blood vessel cannulation in some studies, and animal care issues when animals are maintained for a 
large fraction of their life spans.
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